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1 Introduction

Analytical number theory relies on analytic arguments to deduce arithmetic
facts. For example, by considering the density of primes in an arithmetic pro-
gression relative to the growth of all primes, one can prove Dirichlet’s Theorem
which asserts that any arithmetic progression contains infinitely many primes
(See [2, §3.6]).

The main aim of this essay is to investigate some of the methods of analytic
number theory. In order to demonstrate these, we will be motivated by these
questions:

1. How many elements less than n are coprime to it?

2. How are the primes distributed?

3. What is the probability two (or more) random numbers are coprime?
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The answer to 1 immediately defines an arithmetic functions for us, which
we will come to soon.

The second question is an important topic due to its difficulty but is beyond
the scope of this essay. The techniques used, however, can be applied to the
study of this question.

The final question is interesting, but vague. We will not answer it strictly,
but rather use the results we develop to find the limit as n tends to infinity of
the probability of picking coprime numbers from the set {1, 2, ..., n−1, n} in the
chapter on Dirichlet Series. This is not strictly a probability, but rather a kind
of density.

We will begin this essay by introducing the concept of an arithmetical func-
tion, and see that these behave as a ring when considered with the operation of
Dirichlet multiplication. We will remark on other applications and move onto
Dirichlet series. Here we will see how Dirichlet multiplication, as an operation
on the arithmetic functions, interacts with multiplication of these series.

To end the essay, an answer to the third question will be given using the
results obtained so far.

2 Arithmetic Functions

2.1 Examples

The proofs of the theorems in this section are mostly confined to the Appendix
since they are technical and not very informative. We begin with the Euler Phi
function, defined as follows:

Definition 2.1 (Euler Phi Function). The function φ(n) counts the numbers
less than n which are coprime to n. More concisely:

φ(n) =
∑
r<n

(r,n)=1

1

.

This satisfies some useful properties.

Lemma 2.1. For positive integers m ≥ 1, n ≥ 1

1. If (m,n) = 1 then φ(n)φ(m) = φ(nm).

2. φ(pa) = pa − pa−1 if p is a prime number and a is a positive integer.

3.
∑
d|n

φ(d) = n.

This lemma is proved (in various ways) in Algebra 2 and in Introduction To
Number Theory.

Part 1. and 2. of the theorem us to obtain a more concrete formula for the
Euler Phi function which until now has been defined in abstract terms.
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Theorem 2.2. For n ≥ 1

φ(n) = n
∏
p|n

(
1− 1

p

)
where p ranges over primes dividing n.

The proof of this fact is obtained by use of the Fundamental Theorem of
Arithmetic and parts 1. and 2. of the above lemma. See Appendix.

We note that there is an unproven conjecture concerning Euler’s phi function.

Conjecture 1 (Carmichael’s toitent function conjecture). For every integer
n ≥ 1 there is a positive integer m 6= n for which φ(n) = φ(m)

This was conjectured by Robert Carmichael in 1907. Carmichael provided
a lower bound for a counterexample of 1037 and since then the bounds have
increased to 1010

7

.[5]
We now consider the second interesting function, which we will soon see has

a special role in the theory of arithmetical functions:

Definition 2.2 (Möbius Function). If n =
∏k
i=1 p

αi
i

µ(n) =


1, if n = 1.

0, if any αi > 1.

(−1)k, if αi = 1 for i = 1, 2, ..., k.

Theorem 2.3. The Möbius Function has the following properties:

1. µ(n)µ(m) = µ(mn) if m and n are coprime.

2. ∑
d|n

µ(d) =

{
1, if n = 1.

0, otherwise.
(1)

Despite these nice properties, the definition for µ seems strange, almost
contrived, in contrast to the more natural definitions that have come before.
We shall see why it is so useful in the chapter on Dirichlet Multiplication, in
which there is a much shorter proof of the following theorem:

Theorem 2.4.
φ(n) =

∑
d|n

µ(d)
n

d

.

Here we will prove this theorem, since it is useful to compare with its gen-
eralisation:
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Proof. Let us suppose n has k distinct prime factors.
By Theorem 2.2 we have the product form of φ.

φ(n) = n
∏
p|n

(
1− 1

p

)
.

By expanding the product we obtain:

∏
p|n

(
1− 1

p

)
=
∑
p|n

−1

p
+
∑
pi<pj

1

pipj
+ ... =

k∑
r=1

∑
pi1<...<pir

(−1)r

pi1pi2 ...pir

.
Here the pij range over all the primes dividing n. The strict inequalities are

to ensure no primes are repeated. The claim is now that this sum is the same
as
∑
d|n

µ(d) 1
d .

Remembering the definition of µ we see that the only non-zero terms in this
sum are precisely those whose denominator is a square-free divisor of n, with
signs dependent µ. The squrefree divisors are obtained by taking every possible
product of the distinct primes dividing n and the sign of each term are those
given by evaluating µ of that product. And so the previous expression is exactly∑
d|n

µ(d) 1
d .

To conclude:

φ(n) = n
∏
p|n

(
1− 1

p

)
= n

∑
d|n

µ(d)
1

d

Note, here we have proved this theorem using the product form of φ(n).
In[2], Tom M. Apostle proves this relationship first and then uses it to deduce
the product form.

Also notice that obtaining the product form of φ was possible due to the
first property in Lemma 2,1, that φ(mn) = φ(n)φ(m) for coprime m and n. We
shall give a name to this property now:

Definition 2.3. An arithmetical function f is multiplicative if f is not identi-
cally 0 and for every pair of naturals m and n such that (m,n) = 1 we have:
f(mn) = f(m)f(n).
Aditionally, if f(mn) = f(m)f(n) for every pair of naturals m and n then f is
completely multiplicative.

We have already shown that µ and φ are multiplicative. Neither is completely
multiplicative. If m an n are both square free but share a prime then µ(mn) = 0,
and φ(2) = 1,φ(4) = 2 but φ(8) = 4.

In general, the property of being multiplicative allows us to obtain product
formulas. Not only this, but multiplicative functions are special since they have
inverses under the (yet to be defined) operation of Dirichlet multiplication.
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Before moving on, we shall state a few theorems about multiplicative func-
tions:

Theorem 2.5. Given an arithmetical function f :

a) If f is multiplicative then, f(1) = 1.

b) f is multiplicative if and only if f(pa11 p
a2
2 ...p

ar
r ) = f(pa11 )f(pa22 )...f(parr )

where the pi are prime numbers and ai are positive integer.

c) f is completely multiplicative if and only if f(pa) = f(p)a for all prime p
and integers a ≥ 1.

These proofs are are given in the Appendix.

2.2 Dirichlet Multiplication

To end this section, we will define Dirichlet multiplication and show that the
set of arithmetic functions together with the operations addition and Dirichlet
multiplication form a commutative ring.

Definition 2.4. The Dirichlet product (or convolution) of two arithmetical
functions f and g is defined to be

∑
d|n

f(d)g(nd ) and denoted f ∗ g.

So far we have seen a few Dirichlet products already. Here they are again:

1. N = φ ∗ u.

2. φ = µ ∗ n.

3. I = µ ∗ u.

Where I is 1 for n = 1 and 0 otherwise, u is function that is constantly 1,
and N is the arithmetic function that sends n to n. We do not call it the identity
function to avoid confusion since it is not the identity under the operation of
Dirichlet multiplication.

Theorem 2.6. The set of arithmetical functions with Dirichlet multiplication
and addition form a commutative ring. That is:

Suppose f , g, h are arithmetical functions. Then:

a) f ∗ g is also an arithmetical function (closure).

b) f ∗ I = f (identity).

c) (f ∗ g) ∗ h = f ∗ (g ∗ h) (associativity).

d) f(n) is completely multiplicative if and only if it’s Dirichlet inverse is
µ(n)f(n).

e) Under addition, the set of arithmetical functions form an abelian group.
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Proof.

a) This is clear. f ∗ g is still a function from the naturals to some subset of
the complex numbers.

b) f ∗ I =
∑
d|n

f
(n
d

)
I(d). If d 6= 1 then I(d) = 0. The only term left over in

this sum is therefore f(n)I(1) = f(n).

c)

(f ∗ g) ∗ h =
∑
d|n

(f ∗ g)(d)h(
n

d
) =

.

∑
d|n

∑
k|d

f(k)g

(
d

k

)h
(n
d

)
. This sum is equivalent to ∑

abc=n

f(a)g(b)g(c). (2)

This can be seen by constructing a correspondence between the terms in
each sum. Suppose a, b and c are three integers whose product is n. Since

ab is a divisor of n the term

(∑
k|ab

f(k)g(abk )

)
h
(
n
ab

)
appears in the sum.

Since a divides ab the term f(a)g(aba ) appears in inner sum. And so the

term f(a)g(aba )h( nab ) = f(a)g(b)h(c) appears in the expansion of (f ∗g)∗h.

The other direction is clear since k, dk , and n
d are integers which multiply

to n. The same argument shows that f ∗ (g ∗ h) is also equivalent to (2)
so by transitivity: (f ∗ g) ∗ h = f ∗ (g ∗ h).

d) Suppose f is completely multiplicative, then:∑
d|n

µ(d)f(d)f
(n
d

)
= f(n)

∑
d|n

µ(d) = f(n)I(n) = I(n)

The final equality is true because f(1) = 1. Suppose instead that f has
µf as an inverse, then, if n > 1:∑

d|n

µ(d)f(d)f
(n
d

)
= 0

In particular, we can take n = pa for a prime p and we obtain:

µ(1)f(1)f(p)a + µ(p)f(p)f(pa−1) = 0

This shows that f(pa) = f(p)f(pa−1). We can show by induction that
this means f(pa) = f(p)a which by Theorem 2.7, part c) is equivalent to
f being completely multiplicative.
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In this ring, the Möbius function has an inverse which is the unit function
u as proved in the lemma on the Möbius function. This is the special role it
has, as mentioned earlier, and using this fact we can obtain a shorter proof of
Theorem 1.5 as follows:

Proof. By Lemma 2.1 part 3, φ ∗ u = N . Taking the Dirichlet product with µ
we obtain for the left hand side:

(φ ∗ u) ∗ µ = φ ∗ (u ∗ µ) = φ ∗ I = φ

. and for the right we obtain N ∗ µ = µ ∗N as required.

This result, is, in fact more general and used frequently enough to deserve a
name.

Theorem 2.7 (Mobius Inversion Formula). For arithmetical functions f and g

f(n) =
∑
d|n

g(d) if and only if g(n) =
∑
d|n

f(d)µ
(
n
d

)
.

Proof. f(n) =
∑
d|n

g(d) is equivalent to f = g ∗ u. We Dirichlet multiply both

sides by µ to obtain: f ∗ µ = g ∗ u ∗ µ = g ∗ I = g. We can, of course, multiply
by u to recover the original equation, which proves the converse.

We will now generalise this result since it will be useful later when proving
the final theorem of this essay, but this first requires a generalisation of of
Dirichlet multiplication and a lemma:

Definition 2.5. Suppose F is a real-valued function such that F (x) = 0 for
x ∈ (0, 1), and α is an arithmetical function. Then we define:

(α ◦ (F )(x) =
∑

1≤n≤x

α(n)F
(x
n

)
.

Note, α ◦ F is another function which shares the property G(x) = 0 for
x ∈ (0, 1).

Lemma 2.8. The operation ◦ is associative in the following sense: Let α, β be
arithmetical functions and F a function with the properties above, then

α ◦ (β ◦ F ) = (α ∗ β) ◦ F

Proof. We have:

(α◦(β◦F ))(x) =
∑

1≤n≤x

α(n)
∑

1≤m≤
x

n

β(m)F
( x

mn

)
=

∑
1≤nm≤x

α(n)β(m)F
( x

mn

)
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The sum is the same as:

∑
k≤x

∑
n|k

α(n)β

(
k

n

)F
(x
k

)
To see that these are the same, apply the same reasoning as in the proof of
associativity for Dirichlet multiplication: both sums go through all products
α(a)β(b)F (c) where ab ≤ x and abc = x. The final sum is the same as ((α ∗β) ◦
F )(x) and we are done.

If the reader is interested in the algebraic interpretation of this result, note:
functions such as F together with arithmetic functions, form a module. This is
essentially a vector space over a ring. In this case, arithmetic functions act as
scalars. The formal definition is not relevant to the content of this essay, but
all the required properties are easily verified.

That said, we now generalise the Möbius inversion formula .

Theorem 2.9 (Generalised Möbius Inversion Formula). If α is completely mul-
tiplicative then:

G(x) =
∑

1≤n≤x

α(n)F
(x
n

)
if and only if

F (x) =
∑

1≤n≤x

µ(n)α(n)F
(x
n

)
.

Proof. In the notation we have given so far, G(x) = α◦F . Since α is completely
multiplicative, it’s Dirichlet inverse is α−1 = µ(n)α(n) and so we can multiply
by this inverse:

α−1 ◦G = α−1 ◦ (α ◦ F ) = (α−1 ∗ α) ◦ (F ) = F

.

We have now developed sufficient results to consider Dirichlet series. Before
doing that, we’ll note that another possible direction to take arithmetic func-
tions is to consider their growth rates. For example, the final section of this
essay considers the growth of a particular function. This is common practice in
number theory, especially probabilistic number theory. For a discussion on this,
see [6], Chapter 2.

This section closely followed Chapter 2 of [2], with additional comments.

3 Dirichlet Series

Definition 3.1 (Dirichlet Series). A series of the form
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∑∞
n=1

f(n)

ns

where f(n) is an arithmetical function is called a Dirichlet series. The f(n) are
called Dirichlet coefficients

Note the variable s may be complex, so we use the same definitions for the
exponential function and complex exponentiation that are used in MA244.

Definition 3.2. If a is a real number, and b is a complex number then notation
ab is defined to mean eblog(a).

Since a is a real number, there is no need to worry about the complex
logarithm. The logarithm here is taken to be the inverse of the exponential
function for real values.

The most famous Dirichlet series is the Riemann Zeta function, for which

f(n) = 1. This is given by ζ(s) =
∑∞
n=1

1

ns
.

We will now prove results from Chapter 11 of [2] about the convergence of
Dirichlet series.

Theorem 3.1 (Convergence of Dirichlet Series). Let s = σ + it. Suppose the

Dirichlet series F (s) =
∑∞
n=1

f(n)

ns
is neither absolutely convergent for every

s ∈ C or divergent for all s. Then there is some real number σa such that F (s)
converges absolutely whenever σ > σa and diverges absolutely when σ < σa. σa
is called the abscissa of absolutely convergence.

Proof. Let s1 = σ1 + it1,s2 = σ2 + it2 We will show that |ns1 | is less than |ns2 |
if σ1 < σ2:
|ns| = |n(σ+it)| = |nσ||nit| = |nσ||elog(n)it|
Since |elog(n)it| = 1 we see that |ns| = |nσ| and so if σ1 < σ2 then
|ns1 | = |nσ1 | < |nσ2 | = |ns2 |. Since |ns| is independent of the imaginary part

of s, the absolute convergence of F (s) depends only on the σ. And so we can
call S the set of real numbers σ for which F (s) does not converge absolutely.

This is non-empty by the assumption of the theorem. It is also bounded
above: With s1 and s2 defined as above, the comparison test shows that if
F (s1) converges absolutely, then so must F (s2). Therefore if F (s) converges
absolutely for s, then s is an upper bound of the set S.

By completeness of the real numbers set S has a least upper bound, call it
σa.

The aim is now to show σa defined in this way satisfies the claimed properties.
This is clear because if σ < σa then σ must be in S because if it were not it
would be an upper bound by the reasoning above. This would contradict σa
being an upper bound.

If σ > σa then σ /∈ S since σa is an upper bound, and hence F (s) converges.

Knowing more about the convergence of these series, we can speak about
their products more comfortably. And so we come to a theorem about the form
of the products of Dirichlet series:
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Theorem 3.2. Suppose F (s), G(s) are given Dirichlet series:

F (s) =
∑∞
n=1

f(n)

ns

and

G(s) =
∑∞
n=1

g(n)

ns
.

Then where these series converge absolutely, their product is:

F (s)G(s) =
∑∞
n=1(f ∗ g)(n).

Proof. Since both series converge absolutely for the s we know the following
equality is true:

F (s)G(s) =
∑∞
n=1

f(n)

ns
∑∞
n=1

g(n)

ns
=
∑∞
n=1

∑∞
m=1

f(n)g(m)

(mn)s
.

This can be most clearly seen by considering the partial sums.
Furthermore, the series on the right converges absolutely so we can rearrange

the terms however we want to give the same answer. If we sum all terms whose
denominator is 1s first, then 2s and so on we obtain:∑∞

n=1

h(n)

ns
.

where h(n) is the sum of terms numerators of those terms whose denominator is
ns. In other words, the sum:

∑
dk=n

f(d)g(k) which is (f ∗ g)(n). This completes

the proof.

Corollary 3.2.1. Recalling the Dirichlet convulsions we have so far derived we
obtain the following relationships:

•
∑∞
n=1

µ(n)

ns
= 1/ζ(s).

•
∑∞
n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
.

Since u ∗ µ = I we have:

ζ(s)
∑∞
n=1

µ(n)

ns
=
∑∞
n=1

I(n)

ns
= 1 since I(n) = 1 for n = 1 and 0 otherwise.

Both ζ(s) and
∑∞
n=1

µ(n)

ns
converge for σ > 1 so this is valid in that halfplane.

The second relationship we obtain from the fact φ ∗ u = n. From this we get:

ζ(s)
∑∞
n=1

φ(n)

ns
=
∑∞
n=1

n

ns
= ζ(s− 1)

Since φ(n) < n this series converges for σ > 2.
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4 A Formula For ”Probability” k-randomly se-
lected Integers Are Coprime

We are now almost ready to answer the question we asked in Chapter 2. What
is the probability that two random numbers are coprime? In fact, we can answer
this question for k integers. We define big oh notation.

Definition 4.1. If g(x) > 0 for all x ≥ a then f(x) = O(g(x)) mean there is a

constant M , for which

∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤M for all x ≥ a.

If f(x) = j(x) +O(h(x)) this means the difference f(x)− j(x) = O(h(x))

Theorem 4.1. Suppose we have functions, f = O(F ) and g = O(G). Then:

i) f + g = O(F +G)

ii) fg = O(fG)

iii) if f = O(g) then f + g = O(g)

Big oh terms are a way to collect terms based on their growth size, greatly
simplifying calculations. Why the above theorems are true, and why we have
defined addition and multiplication as we have, can be proved easily. See [4] for
short proofs. They are omitted here.

The following proof is an elaboration of a proof given by J.E Nymann in [3].
Here we, as mentioned, are talking about the limit of a probability rather than
a probability.

Definition 4.2. Zk(t) gives the number of coprime k−tuples whose entries are
less than or equal to t, a real number. In notation: Zk(t) =

∑
(a1,a2,...,ak)=1

ai≤t

1

Lemma 4.2.
∑

1≤d≤t
Zk

(
t

d

)
= [t]k.

Where [x] is the greatest integers less than x.

Proof. The proof is almost identical to the proof of Lemma 2.1, part 3.
Here, we use a subscript t to distinguish between tuples and greatest common

divisors. That is (a, b, c)t is a 3−tuple, while (a, b, c) is the greatest common
divisor of a, b and c.
We define Sd = {(a1, a2, .., ak)t : (a1, a2, ..., ak) = d, ai ≤ n for all i} and S =
{(a1, ..., ak)t : ai ≤ n for all i}. As before, the Sd are a partition of S. We note

that (a1, ..., ak) = d if and only if (
a1
d
, ...,

ak
d

) = 1. Denoting a
′

i =
ai
d

we realise

the sets S
′

d = {(a′

1, ..., a
′

k)t : (a
′

1, ..., a
′

k) = 1, a′i ≤
t

d
} and Sd have the same

size due to the mentioned correspondence. The size of S
′

d is exactly Z

(
t

d

)
by

definition of Zk.
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Therefore: ∑
1≤d≤t

Zk

(
t

d

)
=
∑

1≤d≤t

|Sd| = [t]k

Lemma 4.3. For t ≥ 0, Zk(t) =
tk

ζ(k)
+ O(tk−1) if t ≥ 3 and if t = 2 then

Zk(t) =
tk

ζ(k)
+O(tlog(t)).

Proof. Using the generalised inversion formula we obtain

Zk(t) =
∑

1≤d≤t

µ(d)

[
t

d

]k

=
∑

1≤d≤t

µ(d)

(
t

d
+O(1)

)k
.
Expanding, we obtain:

Zk(t) = tk
∑

1≤d≤t

µ(d)

dk
+ tk−1

∑
1≤d≤t

µ(d)

dk−1
O(1) + ...

∑
1≤d≤t

O(1).

We can, by the properties discussed earlier, rewrite the above as:

Zk(t) = tk
∑

1≤d≤t

µ(d)

dk
+ tk−1O

 ∑
1≤d≤t

µ(d)

dk−1

+ ...+O

 ∑
1≤d≤t

1


.

Now it only remains to simplify the Big-Os.
We begin with the leftmost term. Ignoring the coefficient of tk for now, this

can be written as:

∑
1≤d≤t

µ(d)

dk
=
∑∞
d=1

µ(d)

dk
−
∑∞
d>t

µ(d)

dk
.

We already have shown that

∞∑
d=1

µ(d)

dk
=

1

ζ(k)

.
From this point, it can be seen that to prove the desired result we must show

the remaining terms in sum are O(tk−1) when k ≥ 3 and O(tlog(t)) if k = 2.
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Firstly,∣∣∣∣∣
∞∑
d>t

µ(d)

dk

∣∣∣∣∣ <∑
d>t

1

dk
<

∫ ∞
[t]

1

xk
dx =

1

k − 1

1

[t]k−1
= O(1/tk−1)

Remembering the coefficient of tk we have so far been ignoring, we see that

the first term of this sum is
tk

ζ(k)
+O(t).

If we ignore the coefficient of ti, the remaining terms are each of the form:∑
1≤d≤t

µ(d)

di
, i ≥ 1

When i > 1, each of these is O(1) since they are partial sums of convergent
series. However, when i = 1 we have:∣∣∣∣∣∣

∑
1≤d≤t

µ(d)

d

∣∣∣∣∣∣ <
∑

1≤d≤t

1

d
= O(log(t))

Finally, O

( ∑
1≤d≤t

1

)
= O(t).

Combining these results, we can write:

Zk(t) =
tk

ζ(k)
+O(t) +O(tk−1) +O(tk−2) + ...O(tlog(t)) +O(t)

If k = 2 the dominating term among the O’s becomes O(tlog(t)), otherwise
it is O(tk−1). This proves the theorem.

The result follows easily from this.

Theorem 4.4. The limit as n goes to infinity of the probability that k coprime

numbers picked at random (uniformly) from the set {1, 2, ...n} is
1

ζ(k)

Proof. The probability of obtaining k coprime elements from the set {1, 2, ..., n}
is obtained by the ratio of number of possible coprime k−tuples to the number
of possible k−tuples. The fomer is Zk(n) and the latter is nk. Following from
Lemma 3.5, we have: if k > 2:

Zk(n)

nk
=

1

ζ(k)
+O

(
1

n

)
if k = 2:

Z2(n)

n2
=

1

ζ(2)
+O

(
log(n)

n

)
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In either case, the limit as n goes to infinity of
Zk(n)

nk
is the desired result.

In lower dimensions (k = 2, 3) one can interpret this as a result about points
visible from the origin in a lattice. That is, as in the diagram[1], a point is
visible from the origin only if it’s coordinates are coprime (red). If they are not,
there is another point in the way, as we can see with the line drawn.

Figure 1: An Integer Latice

5 Appendix

5.1 Notation and Conventions

• The natural numbers, N will be the set {1, 2, 3, ...}.

• Throughout this essay, m and n will always be positive natural numbers.

• p will always denote a prime number.

• We will often denote what set we are summing over by a condition below
the sigma sign. For example,

∑
d|n

f(d) means we are summing the values

f(d) on each divisor of a given number n.

• (m,n) will denote the greatest common divisor of m and n.

5.2 Results about the Euler Phi and Möbius Functions

Proof of Lemma 2.1.
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1. We note that φ(n) gives the size of the unit group of the ring Z/nZ.
In Algebra 2 it was proved that Z/mnZ is isomorphic to Z/nZ × Z/mZ. The
theorem follows.

2. Let f(n) count the numbers less than or equal to pa not coprime to pa.
But these are just every multiple of p less than or equal to pa. That is kp for
k ∈ {1, 2, ..., pa−1}. This set clearly contains pa−1 elements, so f(n) = pa−1

Since a number less than pa is either coprime to pa or not φ(n) + f(n) = pa

from which the desired result follows.
3. Let Sd = {k : (k, n) = d, 1 ≤ k ≤ n}. Every element in S = {1, 2, ..., n}

is in one of the Sd. This is because for k ∈ S there is some divisor of n, call it
a, for which (k, n) = a. Furthermore the Sd are disjoint since any integer has
exactly one greatest common divisor with n. Therefore the Sd partition S, and∑
d|n
|Sd| = n. Let’s now consider the size of Sd.

We note that (k, n) = d if and only if (kd ,
n
d ) = 1. For clarity, let q = k

d . The
number of q for which (q, nd ) = 1 is φ

(
n
d

)
. And so the size of Sd is φ(nd ). The

sum becomes: ∑
d|n

φ
(n
d

)
= n

But as d goes through the divisors of n so does n
d (since if d|n then there is

an integer m such that n = md. So m = n
d . This proves the theorem.

Proof of Theorem 2.2. By the fundamental theorem of arithmetic any integer n
can be expressed as a product of prime powers. That is, we can write

n =

k∏
i=1

pαi
i

Inserting this expression into φ(n) and noting that powers of distinct primes are
coprime (allowing us to apply part 1 of Theorem 2.1) we find:

φ(n) = φ

(
k∏
i=1

pαi
i

)
=

k∏
i=1

φ (pαi
i )

By part 2 of Theorem 2.1

φ (pαi) = (pαi − pαi−1) = pαi

(
1− 1

pi

)
and so

k∏
i=1

φ (pαi
i ) =

k∏
i=1

pαi

(
1− 1

pi

)
=

k∏
i=1

pαi
i

k∏
i=1

(
1− 1

pi

)
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Since
∏k
i=1 p

αi
i is the prime product form of n and

∏k
i=1

(
1− 1

pi

)
goes

through the primes dividing n we obtain the required expression.

Proof of Theorem 2.3. 1. There are two cases two consider. The first is when
one of m or n has a square factor. If one of them does then so does mn and so
both µ(n)µ(m) and µ(mn) are 0.

In the second case, neither has a square factor. Suppose n has k prime
factors, and m has r prime factors. Since m and n are coprime, all the prime
factors between m and n are distinct, and hence so are all those of mn. Thus
we obtain:

µ(n)µ(m) = (−1)k(−1)r = (−1)r+k = µ(mn)

2. If n is equal to 1, then it is clear that µ(1) = 1. Suppose n ≥ 1 and
n = pα1

1 pα2
2 ...pαk

k is the prime factor decomposition of n. Consider the non-zero
terms of: ∑

d|n

µ(d)

These are exactly the divisors of n which do not contain square factors. These
can be obtained by taking every possible product of distinct primes. Hence the
above sum is equal to:

µ(1) +
∑
p

µ(p) +
∑
pi,pj

µ(pipj) + ...+ µ(p1p2....pk)

Where the sums are taken over combinations of distinct prime factors divid-
ing n. Of course, µ depends only on how many distinct prime factors, not their
amount so we can rewrite as:

1 +
∑
p|n

(−1)1 +
∑
pi,pj

(−1)2 + ...+ (−1)k

We only need to count the number of combinations of r-tuples of primes
dividing n to determine the coefficient of (−1)r in the above sum. This is

(
r
k

)
and (4) becomes: 1 +

(
1
p

)
(−1)1 + ...

(
p
r

)
(−1)r + ...(−1)k which by the binomial

formula is exactly (1− 1)k = 0

Proof of Theorem 2.5. a) If f is not identically 0 then we have f(n) 6= 0 for
some n. Since f is multiplicative and (n, 1) = 1, we have f(n) = f(n)f(1)
and dividing through by the f(n) gives f(1) = 1.

b) Assuming f is multiplicative: every paii is coprime to every p
aj
j where i 6= j

and so we can use the multiplicative property repeatedly.
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If we instead assume given that the identity holds, then let m and n be
coprime integers. Then if n = pa11 ...p

ar
r and m = qb11 ...q

bk
k are the prime

factor decompositions of n and m we see that:

f(mn) = f(pa11 ...p
ar
r )f(qa11 ...qakk ) = f(pa11 )f(pa22 )...f(qb11 )...f(qbkk ) = f(m)f(n)

c) Given f is completely multiplicative, apply this property repeatedly to
obtain: f(pa) = f(p)f(pa−1) = ... = f(p)a.

If we are given f(pa) = f(p)a for every prime p and integer a ≥ 1 then
argue the same as in the proof of b).
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